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Abstract f(m,n0[0,1], m,ni{1, ..., N}, (1)

Iterative halftoning algorithms offer great flexibility in i.e., a real-valued, sampled, two-dimensional intensity
adapting the halftoning process to specific demanddistribution. The graytone origin&lm,n) is transformed
Constraints defined in the Fourier domain can be usely the halftoning algorithm into the image

to synthesize images with a wide variety of characteris-

tics. Using such constraints, the halftoning process and om,nN0(vy, ...,V,), (2)

the resulting image can be adapted to the characteristics

of a processing system or the graytone original. Moreguantized taz levels (Fig. 1). In this paper, binary im-
over, a control of image texture can be realized and cormages are considered£ 2,v, = 0,v, = 1), but almost all

bined with other constraints. of the argumentation also applies to an arbitrary number
) of quantization levels. The halftoning algorithm is rep-
Introduction resented by the operatgr such that
In recent years, digital halftoning techniques have gained o(m,n) = zf(m,n). 3)

constantly increasing interest because of the widespread

use of binary output devices. The desire to display im-  After the image is displayed on the output device, it

ages with the highest achievable quality within the lim-is fed into a processing systdmresulting in a modified

ited capabilities of such devices has led to different typedistribution s(x,y), with x,y 0 R. Characteristics of the

of algorithms, such as carrier proceduresyor diffu-  output device, such as dot overlap or dot size and posi-

sion? and iterative algorithmsall of which have differ- tioning errors, are neglected here for simplicity. Some

ent properties. In general, the progress in research ha$these effects can be considered, to a sufficient degree,

resulted in increased flexibility in adapting the procesdy a precompensation of the graytone image, while oth-

of binarization to specific situations, device characterisers would require a modification of the halftoning algo-

tics, image properties, applications, etc. rithm based on knowledge about the characteristics of
Iterative algorithms offer by far the most flexibility the specific devicé Therefore, we have

in synthesizing the desired image. Nearly all mathemati-

cally consistent constraints can be realized. Various types qx,y) =Tg(m,n). 4
of iterative algorithms exist, e.g., direct binary search,
simulated annealintyand Hopfield neural networksll Note thats(x,y) is not necessarily a sampled distri-

of which can and have been applied to halftoning. Théution. The systeri can represent any processing sys-
most attractive one seems to be the iterative Fourier trantem and the knowledge about its characteristics may be
form algorithm (IFTA)? due to its relatively fast conver- used to state constraints of the binary image.

gence and the physical importance of the Fourier For example, if the image is viewed by a human
transform. There are various types of constraints that cawbserver,T could stand for the imaging part of the vi-
be formulated in the spectral domain, based on the physsual system and(x,y) for the retinal image. The linear
cal situation for which the image is intended or on propsystems theory describes such a system to a good ap-
erties of the image itself. In this paper, we present aproximation and leads to specific constraints of the Fou-
overview of possible spectral constraints and their realrier spectrum of the binary image (Sec. 4). Knowledge
ization and limitations, along with examples to illustrateabout the processing efx,y) by the retina and the cor-
the effects. Among the constraints presented are weltex may be incorporated Thand result in modified spec-
known procedures, such as lowpass phase contrdl, tral constraints.

as well as new ideas, e.g., control of the noise remaining |

inside a low-pass region or texture control.
e > &

2 The Physical Situation

Before we discuss the various spectral constraints, the flm,n) g(m,n) s(z,y)

physical situation and the general structure of the algoFigure 1. Schematic diagram of the physical situation: The

rithm are outlined. Consider a graytone original: graytone original f(m,n) is halftoned by and fed into the
processing systei resulting in the distribution s(x,y).
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3 The Iterative Halftoning Algorithm The choice of\ is important to avoid stagnation and
ensure an optimal result of the algorithm, but it is not
Often the required characteristics can be stated adliscussed in greater detail here. The operatagener-
equately in the spectral domain and the IFTA is wellates a start distribution from the original graytone im-
suited to implement a binarization. It is based on a sucaage and is often, but not necessarily, identical \Bith
cessive Fourier and inverse Fourier transform, wher@he algorithm terminates aft& cycles, either when a
operations on the current image are performed in thpredefined quality criterion is reached or after a fixed
spatial and frequency domains. After a sufficient numnumber of cycles. Satisfactory results are typically
ber of iterations, sayy, this leads to a binary image with achieved within about 30 to 50 cycles.
the desired spectral constraints: Another point that should be considered is that the
g(mn) = Of (M), displayed binary image is not repeat_ed and thus possesses
e (5) & continuous spectrum, contrary to its mathematical rep-
=[BF “PF]"Bf(mn). resentation implied by the discrete Fourier transform,
which is periodically repeated and discrete in both the
Figure 2 illustrates the structure of the algorithm.spatial and the Fourier domain. When the quantization
The terms~ andF- indicate the Fourier transform and is carried out by a digital device using the discrete Fou-
its inverse, an® performs the operation in the Fourier rier transform, the noise between the sampling points
domain, which ensures the spectral characteristics of themains uncontrolled and is present in the final image.
resulting image. The specific structurePoflepends on To avoid this, the sampling frequency in the Fourier do-
the actual constraints and is shown in later sections. main should at least be doubled, which is easily done by
modifying the operatoB in such a way that the image is
placed centrally in a black field twice as large as the
graytone origina?.

start | B 4 Constraints Based on the
Processing System

B " end Consider again the situation shown in Fig. 1. The binary
e (M) . . : : . .
k4] image is fed into a processing systénif this system is
linear, its characteristics are completely described by its
transfer functionH(y,v), and the effect og(m,n can

easily be stated in the Fourier domain:

S(uv) = H(V)G(WV), (8)
Y

’— where S(,v) and G(,v) are the Fourier transforms of
s(m,n andg(m,n), respectively.
It is often desirable for the system to be unable to
. I distinguish between the original and the binary image,
Figure 2. Schematic diagram of the iterative Fourier trans-so that
form algorithm.

Fo F

ikl e— k]
7 ¢

HUV)G(KV) = H(pV)F(V), 9)

The operatoB acts in the spatial domain and en-whereF(l,v) is the Fourier transform éfm,n). Because
sures that the resulting image is binary. The choid& of the shape ofH(u,v) is given, this leads directly to the
is crucial for the proper convergence of the algorithmspectral constraint
However, there exist different possibilitigsFor the
examples in this papeB, was chosen for G,Vv) = F(W,Vv) if HZ0. (10)

K1 K The support region offi(4,v) must be sufficiently
g (m,n) =Bf ©(m,n) small, because the spectra of the two images are neces-
Q if fOmn)z1-A sarily different [if f(m,n) is not itself binary] and thus

- it {Omm<a . @ G(V) =F(kv) cannot be true in the whole Fourier do-
main. In other words, there must be enough room for the
introduction of the quantization noise spectrum. A de-
scription of the limitations for the size of the support

wherez{(m,nd[0,1] is a pseudorandom numbaAF][0,1/  region ofH(WV) is given in Sec. 7.

2] is a free parameter, and

Htepl £ (mn)—-Z“(mn)]  otherwise

4.1 Lowpass Control
M if x=0 The concept of an iterative control of a lowpass re-
step(x) = B) (7)  gion was proposed by Broja, Wyrowski, and Bryngdahl

ifx<0’ 7 .
"X to adapt the quantization noise spectrum to the charac-
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teristics of the human visual systéhi.he imaging part If Q, covers the whole spectrum, it follows from
of the eye can be regarded to a good approximation d@arseval’s theorem that the hardclip with a clipping level
an incoherent imaging system with a circular exit pupil.equal to one-half yieldsan image with a minimum of
The transfer function of such a system vanishes outside?. No other halftoning algorithm can produce a lower
a circular regiomQ, with radiusy,, which is the cutoff ¢2 Because the IFTA tends to minimiaein Q,, it will
frequency (Fig. 3). If all of the quantization noise spec{produce an image similar to the hardclifif encloses
trum were removed from®,, the observer would not be the whole spectrum. The distribution of the noise spec-
able to distinguish between the original and the binary imtrum of a hardclip is oriented at the spectrum of the
age. Such a procedure can be realized Whly replacing graytone original, and because this is concentrated
the spectrum insid@, with the original spectruni.e., around the dc peak for usual images, so is the noise spec-
® on®) trum. If the size of2, is increased from close to zero to
FP LY =PGT (1Y) an extent that covers the whole spectrum, consequen-
COF(UY) if (V) 0Q (11) tially more and more of the noise remaining insfele
- %(k)(u,V) otherwise will concentrate around the dc peak.
To avoid this behavior, we propose to modifin a
In general, some noise will remain in the controlway that the remaining noise is shifted to the border of
region, because the existence of a binary image with H(,V):
lowpass region exactly identical with that of the graytone
original is not ensured. The smaller the exter®gfthe F®(u,v) = P.GY(,v) (13)
easier it is to remove most of the noise from it, but then =F(WV) + E(UV[GR(,V) — F(u,V)],
the resolution of the output device must be accordingly
higher than that of the eye or, for a fixed device resoluwhereg(j,v) is a scalar function, which weights the noise
tion, the minimal viewing distance is larger. It is thusinsideQ,, with
desirable to control a region as large as possible. In Fig.
4, an image halftoned in this way is shown along with Euv) =1 if ,V)OQ,. (14)
its quantization noise spectrum. The extenfois ap-
proximately 29% of the spectrum. One can see clearly The smaller the integral ové&y,v) is, the less noise
that most of the noise is removed from the lowpass reis tolerated in each iteration cycle and the lower is the total
gion. The largest areas possible to control with this alnoise energy remaining iQ,. Because the algorithm is
gorithm are around 33% of the spectrum. The actual valu®rced to produce a different noise distribution than before,

depends on the particular image. o?is likely to increase. But because the noise may now be
located neap,, whereH(,v) is close to zero, thans-
4.2 Control of the Remaining Noise mitted noise energy, i.e, the energy of the noise weighted

The remaining noise has the tendency to concentratgith the transfer function, will probably be reduced.
around the dc peak, particularly for large control regions.  The difficulty lies in minimizing the noise @, and at
This is the most unfavorable position, becatg,v) the same time introducing the desired characteristic. To find
has its maximum there. This behavior can be easily uran optimal compromise between a minimum of the total
derstood as follows: The algorithm in its form describedremaining noise energy insidg and a minimum of noise
previously has the tendency to minimize the noise enaround the dc peak, an appropri&éfg,v) must be chosen.
ergy in the control region. A measure for the noise enWe have performed several experiments and found
ergy is

> 16V -FEv)

2
2 _ @i, W2 +v2)2 i

! ' fuv=07 . p Tevoe (15)
o otherwise

g

to be a good choice. In Fig. 5, an image halftoned in this
way and its quantization noise spectrum are shown.
Again,Q, was chosen as approximately 29% of the spec-
trum. Compared with Fig. 4, the noise around the dc peak
has almost completely vanished and the image has a
noticeably finer texture.

As expected, the value of = 4.5 for the image in
Fig. 5 is higher than for the image in Fig.c® € 1.6). If
the noise spectrum is multiplied with the transfer func-
tion beforeo? is computed, this yields}, = 5.3 for the
image in Fig. 5, compared @7 = 10.4 for the image in
Fig. 4. The distribution of the remaining noise is thus
adapted tdH(p,v), and a smoother visual appearance of
the binary image is achieved.

Figure 3. Transfer function of a diffraction-limited incoherent
imaging system with a circular exit pupil.
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Figure 4. (a) Image halftoned by controlling a

guantization noise spectrum of part (a).
TR SNSE ;

Figure 5. (a) Image halftoned by controlling a circular lowpass redmf approximately 29% of the spectrum, with additional
control of the structure of the noise remaininginand (b) quantization noise spectrum of part (a).

5 Constraints Based on Image Properties the information as possible of the graytone original dur-
ing the halftoning process. The problems are to identify

To base the constraints of the noise spectrum on the prthe interesting parts of the information and to implement
cessing system is a plausible approach. However, the binarization appropriately.
makes sense only if enough information about the effect
of the system on the image spectrum is available and i& 1 Phase Control
transfer function has an appropriate form. Otherwise, it Much of the information of an image is contained in
is still useful to consider the processing system, but othahe phase of its Fourier spectrum, especially about edges
approaches to shape the noise spectrum may also maked details? A compromise between the introduction of
sense. If all or most of the spectrum is transferred byoise and the preservation of the original spectrum is to
H(w,v), the general goal could be to conserve as much afdapt the phase of the spectrum of the binary image to
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Figure 6. (a) Image halftoned by controlling a circular lowpass region of 5% in amplitude and phase, and a bandpass @¥ion of 2
in phase only, and (b) quantization noise spectrum of part (a).

Figure 7. (a) Image halftoned with an adapted control area and (b) control area used for its synthesis.

that of the graytone original in some ateg but allow FO ) =P G® (V)

differences in the amplitudeln this way, noise can be ’ P '

introduced inQ, that is adapted to the phase of the OF (W, v) if (1, v) 0Q,
graytone image spectrum. To implement this procedure, = G<k)(u,v)|exp{iarg[|:(u,v)]} if (u,v) 0Q,. (16)

P is changed according to ®) (1, v) otherwise
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Because the noise @, is adapted to the phase of a few pixels arranged in a specific way. It is possible to
F(u,v), this procedure results in an enhancement of deenhance (or suppress) a specific texture characterized
tails and edges. By varying the shape and size,@nd by a texture elemenf{m,n by modulating the noise ac-
Q,, the amount of edge enhancement can be controlledording to its Fourier transform(y,v), i.e, the texture

Figure 6 shows an example that illustrates this profilter.:5¢To achieve visually pleasing results, it is useful
cedure. The regiof), consists of a circular lowpass cov- to combine this with a lowpass control. This is possible
ering 5% of the spectrum agy consists of a ring-shaped by combiningT(l,v) with a highpass filteD(,v), so that
bandpass with 20% extent. The edge enhancement asmodified texture filter
clearly visible in the image. In the noise spectrum, the
control areas can be easily identified, because the amount T'(1V) =yD(LW[(1 —a)+ aT(uv)] (18)
of noise is reduced not only @, but also inQ,. This is
due to a coupling between the amplitude and phase is achieved. The parametef][0,1] allows a weighted
the spectrum of the binary image (Sec. 7). If the phase mombination of both filters to achieve a control of the
controlled in a certain region, only a limited amount oftexture enhancement. Far= 0, only the lowpass con-

noise can be introduced in the amplitddle. trol remains, and foa = 1, both filters have the same
weight, which results in a strong predominance of the
5.2 Adaptation of the Control Areas texture element(m,n) in the binary image. The param-

Another possibility to incorporate the image struc-etery allows a scaling of the filter, becaub#,v)J[0,1]
ture in the halftoning process is to modify the shape ofs required.
the control areas. The parts of the spectrum are controlled A modification ofP is necessary to shape the noise
that contain the information that should be transferredccording tor'(u,v). This leads to
to the binary image, while in the remaining regions the

quantization noise spectrum can be introdutadise- FOuv) =P,GM (1)
ful criterion of significance is the amplitude of the spec- E if 700 1-T'
trum of the graytone originali-(,v)|. The control area = Et:’v) ! hz (.H’V)S (p’v), (19)
may be defined via a threshdig 7 (v)  othenwise
Q, = [(MLV)|IF(LV) = t,]. (17)  wherez®¥(u,v)J[0,1] is a pseudorandom number. This

procedure results in a noise distribution, which is glo-
Similarly, if the absence of specific spatial frequen-bally modulated according td ([.,v). In Fig. 8, two ex-
cies is relevant, a threshafd can be introduced instead amples for such filters and the resulting binary images
of or in addition tot,, to control the spectrum where are given. The texture element consists of two pixels,
[F(LV)| <t'a which are separated by two units in the horizontal and
Especially for images with an unusual distributionone in the vertical direction. To achieve an additional
of their frequency content, this procedure may be adlowpass control, the resulting filt&(p,v) was combined
vantageous. In Fig. 7 such an image is shown, along witlvith another filter, which is obtained by the Floyd-
the control area that was used for the binarization. Th&teinberg error diffusion algorithm and can be stated
original image contains high frequencies in the horizonanalytically?’ A value of 1 was chosen for or in Fig. 8(a)
tal and vertical direction but not along the diagonals. Thenda = 0.25 in Fig. 8(b). The texture element is clearly
spectrum is controlled according to these characteristiggredominant in both images, especially in Fig. 8(a). Due
and the algorithm conserves the high-frequency contenb the simultaneous lowpass control, a good graytone
contrary to a lowpass control. The isolated points berendition is also achieved.
longing to Q, do not appear if the spectra are not
oversampled. Oversampling can have a great effect on 7 Limitations of Spectral Constraints
the shape of2, if defined according to Eq. (17). Of
course, an additional threshold can be introduced to déks we have mentioned a few times in the prior descrip-
fine a phase-control area, similar to that described in theon of different spectral constraints, there are limita-

previous section. tions to which constraints can be realized. These
limitations result from different mechanisms present
6 Control of Image Textures during the binarization process.

If oversampled spectra are used, the values in the

The local arrangement of pixels, the image texture, is agpectrum are coupled by a systenNdfinear equations.
important parameter. The visual system is very sensitiv&his coupling results directly from the sampling theo-
to specific patterrt$ and can easily detect a change inrem. Letw denote the number of sampling pointin
texture as a false contour. Also, for output devices, thaith i(0{1,2,3}. Then 20, + w, real values are predeter-
texture often is of importance. For example, if the dotsnined by the constraints (amplitude and pha<e,iand
overlap, different orientations of a fixed number of pix- phase inQ,), and the system of equations has a unique
els may yield different average gray values. solution ifw, = w,. This solution is nothing but the spec-

By modifying the operation in the image spectrumtrum of the graytone original, which means that it is
during the iteration, as proposed in this section, it is pogmpossible to introduce quantization noise without vio-
sible to influence the image texture. To do this, it is helpiating the constraints. Consequently, to have enough free-
ful to use the concept of texture elements, consisting adom for the introduction of noise, it is necessary that
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Figure 8. (a) and (b) Modified texture filters used for the synthesis of halftoned images and (c) and (d) corresponding binary
images.

W, << ;. (20) The fact that the resulting image is binary leads to
an additional restriction, which can be formulated as a
The smaller the control regions are, the more freesystem ofN? nonlinear equations in the same variables
dom exists and the easier it is to synthesize a binargreviously given. Again, the validity of these equations lim-
image with the desired characteristics. its the possibilities to introduce noise and couples ampli-
But even forw, << w,, there is still a relation be- tude and phase iQ,, even if no oversampling is used.
tween the values in the control areas, provided that they If no sharply bounded control regions are used, but
are sufficiently large, because the coupling is of a localhe noise spectrum is modulated according to a function
nature. Similar equations can be given inside a contras in Sec. 6, it is much more difficult to state the exact
region, with errors occurring mostly on the border ofeffect of the interrelations between the values in the spec-
the area. The most important consequence is that amptirum on the realization of spectral constraints. It is clear
tude and phase are interrelaté®#.Thus, control of the that very strong demands are not compatible with the
phase inQ, implies a control of the amplitude, The existence of a correspending binary image. In the case
amount of noise that can be introduced in the amplitudef Sec. 6, this especially means that the integral over 1 —
when controlling the phase is limited. T'(4Vv) has to be sufficiently small to ensure a proper
convergence of the algorithm.
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8 Conclusions 6.

With the use of spectral constraints, it is possible to for-
mulate a wide range of demands on binary images. In.
combination with the IFTA, the halftoning process and
the resulting images can be adapted to a specific appli-
cation. Spectral constraints may be either based o&
knowledge about the post-processing system or about
the graytone original. In this paper, we have shown vari-
ous types of constraints, well-known ones, such as lowpass
control, phase control, and adaptation of the cortreas,

and new ones, such as control of the remaining noise

and control of image textures, along with examples tdo.

illustrate their effects. Even though many constraints can

be formulated, not all of them can be realized. We have1l.

discussed several mechanisms that result in limitations
of the size of control areas and a coupling between am-
plitude and phase inside these regions.
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