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Abstract

Iterative halftoning algorithms offer great flexibility i
adapting the halftoning process to specific deman
Constraints defined in the Fourier domain can be u
to synthesize images with a wide variety of characte
tics. Using such constraints, the halftoning process
the resulting image can be adapted to the character
of a processing system or the graytone original. Mo
over, a control of image texture can be realized and c
bined with other constraints.

Introduction

In recent years, digital halftoning techniques have ga
constantly increasing interest because of the widesp
use of binary output devices. The desire to display 
ages with the highest achievable quality within the l
ited capabilities of such devices has led to different ty
of algorithms, such as carrier procedures,1 error diffu-
sion,2 and iterative algorithms,3 all of which have differ-
ent properties. In general, the progress in research
resulted in increased flexibility in adapting the proc
of binarization to specific situations, device characte
tics, image properties, applications, etc.

Iterative algorithms offer by far the most flexibilit
in synthesizing the desired image. Nearly all mathem
cally consistent constraints can be realized. Various ty
of iterative algorithms exist, e.g., direct binary sear
simulated annealing,4 and Hopfield neural networks,5 all
of which can and have been applied to halftoning. 
most attractive one seems to be the iterative Fourier tr
form algorithm (IFTA),3 due to its relatively fast conve
gence and the physical importance of the Fou
transform. There are various types of constraints that
be formulated in the spectral domain, based on the ph
cal situation for which the image is intended or on pr
erties of the image itself. In this paper, we presen
overview of possible spectral constraints and their r
ization and limitations, along with examples to illustra
the effects. Among the constraints presented are w
known procedures, such as lowpass3,6 or phase control,7

as well as new ideas, e.g., control of the noise remai
inside a low-pass region or texture control.

2 The Physical Situation

Before we discuss the various spectral constraints
physical situation and the general structure of the a
rithm are outlined. Consider a graytone original:
2—Recent Progress in Digital Halftoning II
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    f(m,n)∈[0,1],        m,n∈{1, …, N}, (1)

i.e., a real-valued, sampled, two-dimensional inten
distribution. The graytone original f(m,n) is transformed
by the halftoning algorithm into the image

   g(m,n)∈(v1, ..., vz), (2)

quantized to z levels (Fig. 1). In this paper, binary im
ages are considered (z = 2, v1 = 0, v2 = 1), but almost al
of the argumentation also applies to an arbitrary num
of quantization levels. The halftoning algorithm is re
resented by the operator Q, such that

   g(m,n) = Qf(m,n). (3)

After the image is displayed on the output device
is fed into a processing system T, resulting in a modified
distribution s(x,y), with x,y ∈ RR . Characteristics of th
output device, such as dot overlap or dot size and p
tioning errors, are neglected here for simplicity. So
of these effects can be considered, to a sufficient deg
by a precompensation of the graytone image, while 
ers would require a modification of the halftoning alg
rithm based on knowledge about the characteristic
the specific device.8 Therefore, we have

    s(x,y) = Tg(m,n). (4)

Note that s(x,y) is not necessarily a sampled dist
bution. The system T can represent any processing s
tem and the knowledge about its characteristics ma
used to state constraints of the binary image.

For example, if the image is viewed by a hum
observer, T could stand for the imaging part of the v
sual system and s(x,y) for the retinal image. The linea
systems theory describes such a system to a goo
proximation and leads to specific constraints of the F
rier spectrum of the binary image (Sec. 4). Knowled
about the processing of s(x,y) by the retina and the co
tex may be incorporated in T and result in modified spec
tral constraints.

Figure 1. Schematic diagram of the physical situation: T
graytone original f(m,n) is halftoned by Q and fed into the
processing system T, resulting in the distribution s(x,y).
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3 The Iterative Halftoning Algorithm

Often the required characteristics can be stated
equately in the spectral domain and the IFTA is w
suited to implement a binarization. It is based on a s
cessive Fourier and inverse Fourier transform, wh
operations on the current image are performed in
spatial and frequency domains. After a sufficient nu
ber of iterations, say, N, this leads to a binary image wi
the desired spectral constraints:

    

g m n f m n

f m nN

( , ) ( , ),

[ ] ˆ ( , ).

=

= −

Q

BF PF B1 (5)

Figure 2 illustrates the structure of the algorith
The terms F and F–1 indicate the Fourier transform an
its inverse, and P performs the operation in the Fouri
domain, which ensures the spectral characteristics o
resulting image. The specific structure of P depends on
the actual constraints and is shown in later sections

Figure 2. Schematic diagram of the iterative Fourier tran
form algorithm.

The operator B acts in the spatial domain and e
sures that the resulting image is binary. The choice B
is crucial for the proper convergence of the algorith
However, there exist different possibilities.3,6 For the
examples in this paper, B was chosen for
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where zk(m,n)∈[0,1] is a pseudorandom number, ∆∈[0,1/
2] is a free parameter, and

step
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if
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≥
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The choice of ∆ is important to avoid stagnation an
ensure an optimal result of the algorithm, but it is 
discussed in greater detail here. The operator   ̂B  gener-
ates a start distribution from the original graytone 
age and is often, but not necessarily, identical withB.
The algorithm terminates after N cycles, either when 
predefined quality criterion is reached or after a fix
number of cycles. Satisfactory results are typica
achieved within about 30 to 50 cycles.

Another point that should be considered is that 
displayed binary image is not repeated and thus poss
a continuous spectrum, contrary to its mathematical 
resentation implied by the discrete Fourier transfo
which is periodically repeated and discrete in both 
spatial and the Fourier domain. When the quantiza
is carried out by a digital device using the discrete F
rier transform, the noise between the sampling po
remains uncontrolled and is present in the final ima
To avoid this, the sampling frequency in the Fourier 
main should at least be doubled, which is easily don
modifying the operator B in such a way that the image
placed centrally in a black field twice as large as 
graytone original.9

4 Constraints Based on the
Processing System

Consider again the situation shown in Fig. 1. The bin
image is fed into a processing system T. If this system is
linear, its characteristics are completely described b
transfer function H(µ,v), and the effect on g(m,n) can
easily be stated in the Fourier domain:

S(µ,v) = H(µ,v)G(µ,v), (8)

where S(µ,v) and G(µ,v) are the Fourier transforms o
s(m,n) and g(m,n), respectively.

It is often desirable for the system to be unable
distinguish between the original and the binary ima
so that

        H(µ,v)G(µ,v) = H(µ,v)F(µ,v), (9)

where F(µ,v) is the Fourier transform of f(m,n). Because
the shape of H(µ,v) is given, this leads directly to th
spectral constraint

     G(µ,v) = F(µ,v) if H ≠ 0. (10)

The support region of H(µ,v) must be sufficiently
small, because the spectra of the two images are n
sarily different [if f(m,n) is not itself binary] and thu
G(µ,v) = F(µ,v) cannot be true in the whole Fourier d
main. In other words, there must be enough room for
introduction of the quantization noise spectrum. A 
scription of the limitations for the size of the supp
region of H(µ,v) is given in Sec. 7.

4.1 Lowpass Control
The concept of an iterative control of a lowpass

gion was proposed by Broja, Wyrowski, and Bryngda3

to adapt the quantization noise spectrum to the cha
Chapter III—Algorithms—113
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teristics of the human visual system.10 The imaging part
of the eye can be regarded to a good approximatio
an incoherent imaging system with a circular exit pup
The transfer function of such a system vanishes out
a circular region Ω1 with radius µc, which is the cutoff
frequency (Fig. 3). If all of the quantization noise spe
trum were removed from Ω1, the observer would not b
able to distinguish between the original and the binary 
age. Such a procedure can be realized with P by replacing
the spectrum inside Ω1 with the original spectrum, i.e.,

  

F v G v

F v v

G v

k k

k

( ) ( )

( )

( , ) ( , )

( , ) ( , )

( , )
.

µ = µ

=
µ µ ∈

µ




P

if

otherwise

Ω1 (11)

In general, some noise will remain in the contr
region, because the existence of a binary image wi
lowpass region exactly identical with that of the grayto
original is not ensured. The smaller the extent of Ω1, the
easier it is to remove most of the noise from it, but th
the resolution of the output device must be accordin
higher than that of the eye or, for a fixed device reso
tion, the minimal viewing distance is larger. It is th
desirable to control a region as large as possible. In 
4, an image halftoned in this way is shown along w
its quantization noise spectrum. The extent of Ω1 is ap-
proximately 29% of the spectrum. One can see clea
that most of the noise is removed from the lowpass
gion. The largest areas possible to control with this
gorithm are around 33% of the spectrum. The actual va
depends on the particular image.

4.2 Control of the Remaining Noise
The remaining noise has the tendency to concent

around the dc peak, particularly for large control regio
This is the most unfavorable position, because H(µ,v)
has its maximum there. This behavior can be easily 
derstood as follows: The algorithm in its form describ
previously has the tendency to minimize the noise 
ergy in the control region. A measure for the noise 
ergy is

σ 2

2

1

1

1
=

µ − µ
µ ∈

µ ∈

∑

∑
( , )

( , )

( , ) ( , )

.
v

v

G v F v
Ω

Ω

Figure 3. Transfer function of a diffraction-limited incohere
imaging system with a circular exit pupil.
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If Ω1 covers the whole spectrum, it follows from
Parseval’s theorem that the hardclip with a clipping le
equal to one-half yields11 an image with a minimum o
σ2. No other halftoning algorithm can produce a low
σ2. Because the IFTA tends to minimize σ2 in Ω1, it will
produce an image similar to the hardclip if Ω1 encloses
the whole spectrum. The distribution of the noise sp
trum of a hardclip is oriented at the spectrum of t
graytone original, and because this is concentra
around the dc peak for usual images, so is the noise s
trum. If the size of Ω1 is increased from close to zero 
an extent that covers the whole spectrum, consequ
tially more and more of the noise remaining inside Ω1

will concentrate around the dc peak.
To avoid this behavior, we propose to modify P in a

way that the remaining noise is shifted to the borde
H(µ,v):

F(k)(µ,v) = PξG(k)(µ,v) (13)
      = F(µ,v) + ξ(µ,v)[G(k)(µ,v) – F(µ,v)],

where ξ(µ,v) is a scalar function, which weights the noi
inside Ω1, with

          ξ(µ,v) = 1         if (µ,v)∉Ω1. (14)

The smaller the integral over ξ(µ,v) is, the less noise
is tolerated in each iteration cycle and the lower is the t
noise energy remaining in Ω1. Because the algorithm i
forced to produce a different noise distribution than befo
σ2 is likely to increase. But because the noise may now
located near µc, where H(µ,v) is close to zero, the trans-
mitted noise energy, i.e, the energy of the noise weigh
with the transfer function, will probably be reduced.

The difficulty lies in minimizing the noise in Ω1 and at
the same time introducing the desired characteristic. To 
an optimal compromise between a minimum of the to
remaining noise energy inside Ω1 and a minimum of noise
around the dc peak, an appropriate ξ(µ,v) must be chosen
We have performed several experiments and found

ξ( , )
( )

( , )
/ .

µ =
µ +

µ








 µ ∈
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v

v
c

2 2 1 2 1 2

1

1

if

otherwise

Ω (15)

to be a good choice. In Fig. 5, an image halftoned in 
way and its quantization noise spectrum are sho
Again, Ω1 was chosen as approximately 29% of the sp
trum. Compared with Fig. 4, the noise around the dc p
has almost completely vanished and the image ha
noticeably finer texture.

As expected, the value of σ2 = 4.5 for the image in
Fig. 5 is higher than for the image in Fig. 4 (σ2 = 1.6). If
the noise spectrum is multiplied with the transfer fun
tion before σ2 is computed, this yields σ H

2  = 5.3 for the
image in Fig. 5, compared to σ H

2  = 10.4 for the image in
Fig. 4. The distribution of the remaining noise is th
adapted to H(µ,v), and a smoother visual appearance
the binary image is achieved.



the
Figure 4. (a) Image halftoned by controlling a circular lowpass region Ω1 of approximately 29% of the spectrum and (b) 
quantization noise spectrum of part (a).
al
Figure 5. (a) Image halftoned by controlling a circular lowpass region Ω1 of approximately 29% of the spectrum, with addition
control of the structure of the noise remaining in Ω1 and (b) quantization noise spectrum of part (a).
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5 Constraints Based on Image Properties

To base the constraints of the noise spectrum on the
cessing system is a plausible approach. Howeve
makes sense only if enough information about the ef
of the system on the image spectrum is available an
transfer function has an appropriate form. Otherwis
is still useful to consider the processing system, but o
approaches to shape the noise spectrum may also 
sense. If all or most of the spectrum is transferred
H(µ,v), the general goal could be to conserve as muc
ro-
 it
ct
its
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ake
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the information as possible of the graytone original d
ing the halftoning process. The problems are to iden
the interesting parts of the information and to implem
the binarization appropriately.

5.1 Phase Control
Much of the information of an image is contained

the phase of its Fourier spectrum, especially about e
and details.12 A compromise between the introduction
noise and the preservation of the original spectrum 
adapt the phase of the spectrum of the binary imag
Chapter III—Algorithms—115



of 2
Figure 6. (a) Image halftoned by controlling a circular lowpass region of 5% in amplitude and phase, and a bandpass region 0%
in phase only, and (b) quantization noise spectrum of part (a).
Figure 7. (a) Image halftoned with an adapted control area and (b) control area used for its synthesis.
e
he
ur
that of the graytone original in some area Ω2, but allow
differences in the amplitude.7 In this way, noise can b
introduced in Ω2 that is adapted to the phase of t
graytone image spectrum. To implement this proced
P is changed according to
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Because the noise in Ω2 is adapted to the phase 
F(µ,v), this procedure results in an enhancement of
tails and edges. By varying the shape and size of Ω1 and
Ω2, the amount of edge enhancement can be contro

Figure 6 shows an example that illustrates this p
cedure. The region Ω1 consists of a circular lowpass co
ering 5% of the spectrum and Ω2 consists of a ring-shape
bandpass with 20% extent. The edge enhanceme
clearly visible in the image. In the noise spectrum, 
control areas can be easily identified, because the am
of noise is reduced not only in Ω1 but also in Ω2. This is
due to a coupling between the amplitude and phas
the spectrum of the binary image (Sec. 7). If the phas
controlled in a certain region, only a limited amount
noise can be introduced in the amplitude.13

5.2 Adaptation of the Control Areas
Another possibility to incorporate the image stru

ture in the halftoning process is to modify the shape
the control areas. The parts of the spectrum are contro
that contain the information that should be transfer
to the binary image, while in the remaining regions 
quantization noise spectrum can be introduced.9 A use-
ful criterion of significance is the amplitude of the spe
trum of the graytone original, |F(µ,v)|. The control area
may be defined via a threshold tA,

Ω1 = [(µ,v)||F(µ,v) ≥ tA]. (17)

Similarly, if the absence of specific spatial freque
cies is relevant, a threshold t′A can be introduced instea
of or in addition to tA, to control the spectrum wher
|F(µ,v)| < t′A.

Especially for images with an unusual distributi
of their frequency content, this procedure may be 
vantageous. In Fig. 7 such an image is shown, along 
the control area that was used for the binarization. 
original image contains high frequencies in the horiz
tal and vertical direction but not along the diagonals. T
spectrum is controlled according to these characteris
and the algorithm conserves the high-frequency con
contrary to a lowpass control. The isolated points 
longing to Ω1 do not appear if the spectra are n
oversampled. Oversampling can have a great effec
the shape of Ω1 if defined according to Eq. (17). O
course, an additional threshold can be introduced to
fine a phase-control area, similar to that described in
previous section.

6 Control of Image Textures

The local arrangement of pixels, the image texture, is
important parameter. The visual system is very sens
to specific patterns14 and can easily detect a change
texture as a false contour. Also, for output devices,
texture often is of importance. For example, if the d
overlap, different orientations of a fixed number of p
els may yield different average gray values.

By modifying the operation in the image spectru
during the iteration, as proposed in this section, it is p
sible to influence the image texture. To do this, it is he
ful to use the concept of texture elements, consistin
e-
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a few pixels arranged in a specific way. It is possible
enhance (or suppress) a specific texture characte
by a texture element t(m,n) by modulating the noise ac
cording to its Fourier transform T(µ,v), i.e, the texture
filter.15,16 To achieve visually pleasing results, it is use
to combine this with a lowpass control. This is possi
by combining T(µ,v) with a highpass filter D(µ,v), so that
a modified texture filter

T ′(µ,v) = γD(µ,v)[(1 – α)+ αT(µ,v)] (18)

is achieved. The parameter α∈[0,1] allows a weighted
combination of both filters to achieve a control of t
texture enhancement. For α = 0, only the lowpass con
trol remains, and for α = 1, both filters have the sam
weight, which results in a strong predominance of 
texture element t(m,n) in the binary image. The param
eter γ allows a scaling of the filter, because T ′(µ,v)∈[0,1]
is required.

A modification of P is necessary to shape the no
according to T ′(µ,v). This leads to
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P

if

otherwise

1 (19)

where z(k)(µ,v)∈[0,1] is a pseudorandom number. Th
procedure results in a noise distribution, which is g
bally modulated according to T′(µ,v). In Fig. 8, two ex-
amples for such filters and the resulting binary ima
are given. The texture element consists of two pix
which are separated by two units in the horizontal 
one in the vertical direction. To achieve an additio
lowpass control, the resulting filter T(µ,v) was combined
with another filter, which is obtained by the Floy
Steinberg error diffusion algorithm and can be sta
analytically.17 A value of 1 was chosen for or in Fig. 8(
and α = 0.25 in Fig. 8(b). The texture element is clea
predominant in both images, especially in Fig. 8(a). D
to the simultaneous lowpass control, a good grayt
rendition is also achieved.

7 Limitations of Spectral Constraints

As we have mentioned a few times in the prior desc
tion of different spectral constraints, there are limi
tions to which constraints can be realized. Th
limitations result from different mechanisms pres
during the binarization process.13

If oversampled spectra are used, the values in
spectrum are coupled by a system of N2 linear equations
This coupling results directly from the sampling the
rem. Let ωi denote the number of sampling points in Ωi,
with i∈{1,2,3}. Then 2ω1 + ω2 real values are predete
mined by the constraints (amplitude and phase in Ω1 and
phase in Ω2), and the system of equations has a uni
solution if ω1 ≥ ω3. This solution is nothing but the spe
trum of the graytone original, which means that it
impossible to introduce quantization noise without v
lating the constraints. Consequently, to have enough 
dom for the introduction of noise, it is necessary tha
Chapter III—Algorithms—117



 binary
Figure 8. (a) and (b) Modified texture filters used for the synthesis of halftoned images and (c) and (d) corresponding
images.
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ω1 << ω3. (20)

The smaller the control regions are, the more fr
dom exists and the easier it is to synthesize a bin
image with the desired characteristics.

But even for ω1 << ω3, there is still a relation be
tween the values in the control areas, provided that 
are sufficiently large, because the coupling is of a lo
nature. Similar equations can be given inside a con
region, with errors occurring mostly on the border
the area. The most important consequence is that am
tude and phase are interrelated.13,18 Thus, control of the
phase in Ω2 implies a control of the amplitude, Th
amount of noise that can be introduced in the amplit
when controlling the phase is limited.
118—Recent Progress in Digital Halftoning II
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The fact that the resulting image is binary leads
an additional restriction, which can be formulated a
system of N2 nonlinear equations in the same variab
previously given. Again, the validity of these equations li
its the possibilities to introduce noise and couples am
tude and phase in Ω2, even if no oversampling is used

If no sharply bounded control regions are used, 
the noise spectrum is modulated according to a func
as in Sec. 6, it is much more difficult to state the ex
effect of the interrelations between the values in the s
trum on the realization of spectral constraints. It is cl
that very strong demands are not compatible with 
existence of a correspending binary image. In the c
of Sec. 6, this especially means that the integral over
T ′(µ,v) has to be sufficiently small to ensure a prop
convergence of the algorithm.



o
.
n

 

a

 
c
a
o
a

a
e

n

o

-

i

y

ral

ent

ion
ic-

igi-

 in

ric-
s,”

ex-

ing

e-
ss-

sis
a-
8 Conclusions

With the use of spectral constraints, it is possible to f
mulate a wide range of demands on binary images
combination with the IFTA, the halftoning process a
the resulting images can be adapted to a specific ap
cation. Spectral constraints may be either based
knowledge about the post-processing system or ab
the graytone original. In this paper, we have shown v
ous types of constraints, well-known ones, such as lowp
control, phase control, and adaptation of the control areas,
and new ones, such as control of the remaining no
and control of image textures, along with examples
illustrate their effects. Even though many constraints 
be formulated, not all of them can be realized. We h
discussed several mechanisms that result in limitati
of the size of control areas and a coupling between 
plitude and phase inside these regions.
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